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An analysis is constructed in order to estimate the dispersion relation for internal 
waves trapped in a layer and propagating linearly in a fluid of infinite depth with 
a rigid surface. The main interest is in predicting the structure of internal wave 
wakes, but the results are applicable to any internal waves. It is demonstrated that, in 
general l/c, = l/cN + k /o , , ,  + ~ ( k )  where cp is the wave phase speed for a particular 
mode, cN is the phase speed at k = 0, om,, is the maximum possible wave angular 
frequency and om,, < N,,, where N,,, is the maximum buoyancy frequency. Also, 
~ ( 0 )  = 0, ~ ( k )  = o(k) for k large, and is bounded for finite k.  In particular, when ~ ( k )  
can be neglected, the dispersion relation for a lowest mode wave is approximately 

l/cp = (hm N2(y)y dy)-' + k/o, , , .  The eigenvalue problem is analysed for a class 
of buoyancy frequency squared functions N 2 ( x )  which is taken to be a class of real- 
valued functions of a real variable x where 0 < x < m such that N 2 ( x )  = O(e-Dx) as 
x -, co and 1/p is an arbitrary length scale. It is demonstrated that N 2 ( x )  can be 
represented by a power series in e-PX. The eigenfunction equation is constructed for 
such a function and it is shown that there are two cases of the equation which have 
solutions in terms of known functions (Bessel functions and confluent hypergeometric 
functions). For these two cases it is shown that ~ ( k )  can be neglected and that, in 
addition, om,, = N,,,,,. More generally, it is demonstrated that when k + 00 it is 
possible to approximate the equation uniformly in such a way that it can be compared 
with the confluent hypergeometric equation. The eigenvalues are then, approximately, 
zeros of the Whittaker functions. The main result which follows from this approach 
is that if N 2 ( x )  is O(e-flX) as x + m and has a maximum value Nk,, then a sufficient 
condition for l/c, - k/Nmax to hold for large k for the lowest mode is that N 2 ( t ) / t  is 
convex for 0 < t < 1 where t = e-flX. 

1. Introduction 
This paper describes work carried out in order to construct an analysis to estimate 

the dispersion relation for internal waves trapped in a layer. Some of the background 
to this analysis, including experimental and numerical work, is briefly described in 
this Introduction. 

The requirement for the analysis described in this paper came about as a result of 
attempting to predict the shape and structure of internal ship wakes. Figure 1 shows 
a photograph of a 1500 ton ship (the RMAS Roysterer) in Loch Linnhe, Scotland on 
September 15, 1987 at 15:36:03 GMT. The photograph was taken from a helicopter 
at a height of 500 ft. The ship is at the lower left of the photograph and is steaming 
from top to bottom at a measured speed of 1.00 m/s relative to the land in water 
of about 120 m depth. It will be observed that there are bands on the water surface 
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FIGURE 1. The surface effect of an internal wave wake generated by 
RMAS Roysterer in Loch Linnhe. 

extending diagonally across to the moored instrument platforms in the upper right 
of the photograph. These bands are the surface manifestation of a (lowest mode) 
internal wave wake trapped in a layer, and are caused by the long internal waves 
(with wavelengths varying between 80 and 250 m) interacting with the short surface 
waves. The water depth at the instrumented site was about 70 m. 

An explanation of the modal structure of internal waves and the long wave-short 
wave interaction is given in Phillips (1977). This experiment was carried out at slack 
water and the tidal currents as measured at the instrument platforms were always less 
than 5 cm/s during this particular experiment and typically less than 2 cm/s. The 
wind speed and direction were about 2.5 m/s and 24CF (the wind was blowing in the 
same direction as the ship velocity). 

The patterns in figure 1 are qualitatively similar to the sketches presented in plate 4 
of Eckman (1906). 

Figure 2 shows a radar image corresponding to figure 1 and obtained 6 s after 
it. The radar image was obtained by an airborne synthetic aperture radar at a 
radar wavelength of 5.6 cm and with horizontal polarization at an incidence angle of 
17.0" from the vertical at the ship. The image is in an orthographic map projection 
and corresponds to an area measuring approximately 3 km by 2 km. The spatial 
resolution was of the order of 5 m. The image in figure 2 has been shown to 
correspond closely with direct measurements of the (mode 1) internal waves made by 
conductivity-temperature-depth sensors (Perry 1992). 

Clearly, from the point of view of pattern recognition the shape of wake images 
such as figure 2 is important. The structure of internal wake images is dependent on 
the dispersion relation (Keller & Munk 1970; Lighthill 1978). In order to predict the 
details of the pattern it is desirable to have a dispersion relation which is as simple as 
possible and depends on as few parameters as possible. The analysis reported in this 
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FIGURE 2. Radar image of the scene shown in figure 1 .  

paper was carried out in order to demonstrate the existence of a simple (approximate) 
two-parameter dispersion relation for trapped internal waves. 

In the preceeding discussion it was implicitly assumed that the internal waves 
propagate linearly, and this point is now considered further. A typical maximum 
long-wave phase speed for internal waves is of the order of 1 m/s (in the case of 
the experiment described above it was about 50 cm/s). This is less than typical 
ship speeds and consequently a ‘Mach wedge’ usually exists. The ‘Mach wedge’ 
is here taken to be the neighbourhood of the leading edge of the wake system 
beyond which the waves do not propagate. In recent work (Miloh & Tulin 1988; 
Lee-Bapty 1991, 1992) it has been shown that for a two-layer fluid the interior of 
the wake is dominated by linear dispersion away from the Mach wedge. In the 
neighbourhood of the Mach wedge long waves dominate and the effect of dispersion 
is less. Consequently, nonlinear effects are important only in the region of the Mach 
wedge. However, even in the interior away from the Mach wedge, the cumulative 
effects of nonlinearity will eventually compete with the linear dispersion over long 
enough distances. Nevertheless, the dispersive terms in the wave equation dominate 
the nonlinear terms for many wavelengths behind the generating source and therefore 
the waves can be considered to propagate linearly in the wake interior. This argument 
is supported by experimental observations in the case of continuous stratification in 
a sea loch with a single main peak in the buoyancy frequency function (Watson, 
Chapman & Ape1 1992; Stapleton & Perry 1992). 

Generally, it is found experimentally that for the conditions described here the most 
visible surface effects are produced by the lowest mode (called mode 1 in this paper). 
Hence the analysis in this paper emphasizes the lower modes, especially mode 1. 

The eigenfunction equation for trapped internal waves in the Boussinesq approxi- 
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mation is well known (Phillips 1977; Krauss 1966) 

The effects of the Earth’s rotation have been ignored here, as have the effects of 
shear. The wave function vrn is the local wave amplitude, m is the mode number 
(where the lowest mode corresponds to m = l) ,  k is the horizontal wavenumber, cp is 
the horizontal phase speed for a given mode, and N 2 ( x )  is the square of the buoyancy 
or Brunt-Vaisala frequency 

2 g a P  
P ax 

N (x) = -- 

The direction of increasing depth is taken as the positive x-direction. Equation 
(1.1) together with two boundary conditions (e.g. ~ ( 0 )  = 0 and ~ ( x )  + 0 as 
x + co) constitute a Stiirm-Liouville problem. The eigenvalues corresponding to the 
various modes are defined as l/c, throughout this paper. A rigid top boundary is 
assumed throughout and this amounts to an assumption that the frequency of the 
internal waves is very much less than that of any free surface waves; a very good 
approximation (Phillips 1977, equation 5.2.13). 

Analysis of the Stiirm-Liouville problem often involves three different types of sub- 
domain; the oscillatory, non-oscillatory, and transition (connecting) regions. Solutions 
valid in each sub-domain are then matched and patched together to produce the com- 
plete eigenfunction. An alternative approach is to seek approximate eigenfunctions 
which are uniformly valid over the whole x domain; this is the approach adopted in 
this paper. There is then no neccessity to analyse each domain separately and then 
hopefully the eigenvalues are simpler to estimate. Furthermore, as will become clear, 
the type of result sought in this analysis is of a very delicate kind which is intimately 
connected with the properties of the zeros of higher transcendental functions. 

The ultimate objective of the work presented here is to estimate the dispersion 
relation for internal waves satisfying equation (1.1) given the density function p ( x )  
and the boundary conditions. Previous analytical attempts at this problem have 
involved a specific function (a ‘model function’) for N 2 ( x ) ,  and results for several such 
model functions exist (Krauss 1966). In this paper an attempt is made to analyse 
the problem for a class of N 2 ( x )  functions. The class has to be limited in some way 
in order to have some chance of constructing a tractable analysis and so N 2 ( x )  is 
taken to be a class of real-valued functions of a real variable x where 0 d x d co 
such that N 2 ( x )  = O(e-PX) as x + co. This seems to be the most promising way 
of circumscribing N2(x), and this type of functional behaviour has been considered 
before (Garrett & Munk 1972). 

Before proceeding further some experimental data are discussed since these data 
will be used as an illustration. Figure 3 shows some density measurements made in 
Loch Linnhe, Scotland, on September 15, 1987 at the instrumented site at the upper 
right in figure 1. The y-axis in this figure has units of oT and this has the usual 
meaning, that is, the water density = 1000.O+oT kg/m3. The 398 data points in figure 
3 are the aggregate of six yo-yo dips made over a period of six minutes by means 
of a conductivity-temperature-depth sensor. This period of six minutes spanned the 
time when the images in figure 1 and figure 2 were obtained. Although these data 
show a shallow pycnocline (which was in fact a halocline) the method developed here 
is applicable to other situations. 

There are a number of numerical methods available for solving a differential 
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FIGURE 3. Density anomaly for the Loch Linnhe water column on 15 September 1987 during 15:33 

to 15:39 GMT. Measured at RV Calanus on the instrumented site. 

equation such as (1.1) and for this example a shooting method was selected (Press 
et al. 1986). The experimental data can also be modelled in a number of ways and 
a monotonically increasing function was fitted to the data using a nonlinear least 
squares technique. This curve is also shown in figure 3, and it fits the data well. 
The only difficulty which arises in the numerical solution of equation (1.1) in the 
case of a water column such as that shown in figure 3 is the usual one which results 
from the bottom boundary. Since N 2 ( x )  + 0 as x -, co the equation has a solution 
y - Ae-kx +Be+kx for large x. A numerical procedure thus has to implicitly cancel out 
a growing dominant exponential in the presence of the required (regressive) solution 
Aeckx. This was overcome in this example by choosing a finite depth in conjunction 
with a suitably large number of significant figures. 

The computed dispersion curve for the case of the water column shown in figure 
3 is shown in figures 4 and 5. Figure 4 shows a plot of o against k for the first two 
modes and figure 5 shows a plot of l/cp against k for the same data. Notice that 
the plot of l/cp against k is very nearly linear. This is not an exceptional case. Many 
computations of dispersion relations with experimentally measured water columns 
like figure 3 have been carried out with very similar results. These computations lead 
to a particularly simple form for the dispersion relation 

1 kl 1 
i.e. - - + -, 

1 + lk’ cp c c 
- _  ck a=- 

to a surprising degree of precision. In (1.3) c is an arbitrary wave phase speed and 
1 is an arbitrary length scale. This approximate dispersion relation has proved to be 
very useful for predicting the patterns of ship-generated internal wave wakes (Perry 
1992; Stapleton & Perry 1992; Watson, Chapman & Ape1 1992). 

Formula (1.3) is an interesting result which merits further investigation. Notice that 
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FIGURE 4. Internal wave dispersion relation for modes 1 and 2, computed from equations (l.l), 

(1.2) and the density function in figure 3. 

figures 4 and 5 show that it is valid for wavelengths of the same order as the layer 
thickness and depth: This is not just a simple asymptotic result. 

In the next section the general properties of the dispersion relation are described 
and it is shown that l/c, = l/c, + k/w,,, + ~ ( k )  where cpo and om,, are constants 
to be defined, and E(k) is a function which is zero at k = 0. Also, E(k) = o(k) for k 
large, and is bounded for finite k.  The main difficulty in verifying expression (1.3) 
analytically is in determining whether E(k) can be neglected, and this can only be done 
by considering specific cases. In $3 it is demonstrated that, when N2(x) = O(e-fl”) 
for large x, then N2(x) can be expanded as a power series in e-BX. The differential 
equation (1.1) is considered in $4 with an exponential power series for N2(x), and two 
special cases which lead to Bessel functions and confluent hypergeometric functions 
for the eigenfunctions are analysed in $55 and 6. It is demonstrated that (1.3) is 
approximately valid for these two special cases. In $7 the general case is considered 
and a sufficient condition for the constant w,,, to be equal to the maximum buoyancy 
frequency is worked out. Some effects of multiple peaks in the N 2 ( x )  function are 
described qualitatively in $8. Finally, the various results derived in the paper are 
summarized in 99. 

2. General properties of the dispersion relation 
2.1. Small k 

It is easily demonstrated that the general solution of equation (1.1) in the form of an 
integral equation is 

~ ( x )  = Ae+kx + BeTkx + 1 1” N 2 ( y )  sinh k ( y  - x)v(y)dy. 
kci 



On the dispersion relation for trapped internal waves 

- 
8 -  
- 
- 
- - 6 -  E 

1 -  
m w -  

u -  a - 4 -  
- 
- 
- 

2 -  
- 
- 
- 

lo- 

- 
- 
- 
- 

, I , >  , , , , ) ) I , ,  1 , ~ I ) ~ I I , ) , , , I ) , , 1 1  

Assume a rigid surface so that at x = 0, y = 0 and then B = - A  so that 

y(x) = 2A sinh kx + - N2(y) sinh k(y - x)y(y)dy. kcg I” 
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2 A  is arbitrary and it will be taken as unity so that at x = 0, y’(x) = k. As before, it 
is assumed that the water is very deep in comparison with l /k .  At the bottom y(x) 
is required to go to zero as x + 00, so those terms which grow exponentially at co 
must sum to zero. Hence 

(-j=--- e+kx efkx 4’ N2(y)y(y)e-kydy 
2 2kcg 

as x + 00. Hence 

1 N2(y)y(y)ePkYdy = 1. 
kc; 

(2.3) 

(2.4) 

This is also the requirement that y’(x) 4 0 as x + 00. This, coupled with the 
differential equation (l.l), means that all the derivatives go to zero at co. Hence 
y(x) = O(x“ee-”) which is self-consistent since it has been implicitly assumed that 
e-kx fox N2(y)y(y)ekydy is bounded as x -, 00. 

Equation (2.2) is a Volterra equation and can be solved iteratively to give 

y(x) = sinh kx + - N2(y) sinh k(y - x) sinh ky dy + . . . , (2.5) kcg 6” 
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where (2.5) is taken as far as the first iteration. Substituting (2.5) into (2.4) then gives 
1 Po0 

I = -  k:i 1 N2(y) sinh ky e-kYdy 

+L Lrn N2(y)ePkYdy 1’ N2(z )  sinh k(y - z )  sinh kz dz + . . . 
k2c;f 

Continuing the iterations produces a power series in l /ct  with an infinite number 
of roots corresponding to the phase speeds of the infinite set of modes (provided that 
N 2 ( y )  does not exclusively consist of a set of one or more delta functions). The lowest 
mode has the greatest long-wave phase speed (Phillips 1977, 95.2) and consequently 
this case corresponds to the smallest root of the power series in l/cE. In such a case 
a first approximation to the smallest root is given by the first two terms 

1 “  
1 m - 1 N 2 ( y )  sinh ky e-kYdy 

kci (2.7) 

(Whittaker 1918), provided that the ‘ratio of the smallest root to every one of the 
others is small’. 

Suppose now that k 3 0. Then 

ck m lE N2(y)ydy - k Srn N2(y)y2dy + . . . , (2.8) 
0 

where cpo is the long-wave phase speed of a mode 1 wave. 

2.2. Large k 
The angular frequency of an internal wave must be less than the maximum buoyancy 
frequency, for otherwise equation (1.1) would not have oscillatory solutions. Hence 
w < N,,,. Provided that N 2 ( y )  is bounded it is possible to prove by means of Sturm’s 
comparison theorems (Yih 1965, pp. 31-33) that the angular frequency of an internal 
wave must be an increasing function of k. Note that when N2(y) is unbounded, 
classical Stiirm-Liouville theory (including the Sturm comparison theorems) is not 
valid. For example, when N 2 ( y )  consists of one or more delta functions (corresponding 
to step discontinuities in the density function) there will only be a finite set of modes. 
Hence, when the stratification is continuous, and k -+ 00, then w 4 w,,, and 
l/c, - k/wmax and so in equation (1.3), c / l  - urnax, where om,, < N,,,. Hence a result 
such as (1.3) might be expected for large k in the case of continuous stratification. 

On the other hand, if k -+ cc in equation (2.7) then 

and so l/c, = O(ki) for large k .  This is at variance with the result presented in the 
previous paragraph, an apparent contradiction which is resolved by the discussion of 
the two-layer case which follows next. 

2.3. The two-layer case 
It is instructive to compare the foregoing results with the case of two layers, the depth 
of the interface being d and the layer below the interface being of infinite depth. In 
this case 

(2.10) 
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(Phillips 1977, p. 213). Ap is the difference in density between the two layers and po is 
one half of the sum of the densities of the two layers. It follows that as kd + 0 then 
ci - gdAp/po. This result also follows directly from equation (2.7) on substituting a 
delta function for N 2 ( x ) .  Hence (2.7) gives the exact result in the case of two layers. 
This is not surprising since all modes above the first disappear in the case of two 
layers and if a delta function is substituted for N 2 ( x )  into the iterated solution (2.5) of 
the integral equation (2.2) it will be found that all the iterations above the first vanish. 
Consequently (2.7) must then give the exact result. Hence (2.8) may be expected to 
give a reasonable result generally when the water column can be approximated by 
two layers. Actually, it will be demonstrated in 85 and 6 that the approximation is 
reasonable even when the water column is totally unlike two layers. 

On the other hand, as kd -+ m then ci - g A p / 2 k p o  and so, when Niax is infinite, 
l/cp = O(k4) .  Since equation (2.7) is essentially a two-layer approximation it may be 
expected to give the same result, and this was shown to be the case in 52.2. 

2.4. General conclusions 
In summary, the above arguments show that as k -+ co, l/c, -+ k / o m a x  when N i a x  
is finite and the stratification is continuous, and l/c, = O(k4)  when N i a x  is infinite 
and the density function is therefore not continuous. When k -, 0, l /cp -+ l /cp 
where cp is given approximately by (2.8), a result which is exact for two layers. For 
a continuous density function the dispersion relation can therefore be expressed as 

(2.11) 
1 1  k -- - + - + E(k), - 

Cp C p  Wmax 

where ~ ( 0 )  = 0 and E(k) = o(k )  for large k. In addition, E(k) must be bounded for 
finite k since, as explained above in 92.2, o is an increasing function of k and l/c, is 
therefore finite for finite k. The approximate dispersion relation (1.3) is therefore valid 
if E(k) is small in some sense, which has so far been shown to be the case for small 
enough k and large enough k. If E(k) can be neglected the approximate dispersion 
relation for a mode 1 wave is 

= ( iaN2(y)ydy)--  ; k  + -. 
CP o m a x  

(2.12) 

In the examples to be discussed later, mmax = Nmax. 
It remains now to analyse the problem further by comparing equations (1.3) and 

(2.11) with more precise results from specific examples. We start first with the choice 
of a suitable density function. 

3. The density function 

Take the density function to be 

P ( X )  = Po + AP f(xL (3.1) 

where f ( x )  is a continuous real-valued function defined on [O,oo]. It is assumed 
throughout this paper that the water depth is infinite. Let f(0) = 0 (so that p(0) = 
po > 0), and let f ( x )  -+ 1 as x -+ 00 (so that p(m) = po + A p ) .  For example 
f ( x )  = 1 - ecBX satisfies these requirements. Moreover this function appears to be a 
rough approximation to the measured density function in figure 3. 
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3.1. The exponential density function 

In this analysis x is taken to be real, where x E [O,co].  The interval [O,co] is mapped 
on to [1,0] by the transformation x = e-"' and so substituting x for e-"' gives f ( x )  
where x E [0,1]. The Weierstrass approximation theorem (Cheney 1966, p. 65 et seq) 
implies that a set of linear combinations of xr is dense on [0,1], spans this interval, 
and asserts that a unique polynomial exists which approximates f ( x )  uniformly on 
[0, I] as n increases. This polynomial is here identified with Cr=o a r f .  As n --f 00, 
it approximates f(x) exactly on the closed interval [0,1]. Transforming back to 
x E [0, E] then gives the result that f ( x )  can be approximated uniformly on [0, co] by 

I 1  

(3.2) 

and in addition, in order to satisfy the requirements of (3.1) we must have uo = 1 and 

Equation (3 .2)  gives f(x) - 1 = O(e-"') as x + m, but f ( x )  - 1 is O(e-i'X) and so 
C:=o ur = 0. 

CJ = p. The parameter p is thus unique, and the exponential expansion 

13.3) 

is also unique on [0, a ] .  
This paper is concerned with a theoretical investigation of the dispersion relation 

and the numerical modelling of experimental data is beyond this scope. However, 
some comments on the expansion (3.3) are appropriate. In practice it may be quite 
difficult to determine p with any precision. The reason is that f ( x )  is determined 
from experimentai data measured over a finite interval. The requirement that f ( x )  - 1 
be O(ed") at infinity may thus not be easy to enforce and when this constraint is 
removed p may not be unique. Only the case of finite n is considered in this paper. 
If n is finite then f ( x )  may be approximated 'in the mean' by minimizing a norm 
such as in a 'least squares' approximation. This can be accomplished by choosing a 
value for p and then computing a set { a , )  by least squares, thus minimizing a square 
norm, which however, depends on p. Hence the norm must be minimized 'globally' 
by iterating on p, computing new sets { a t )  until it is mininized with respect to { c t l ,  p ) .  
This approximation will be unique (given n),  but as the order of the polynomial, 
n, is increased, the minimum of the norm will rapidly become less well defined and 
eventually almost independent of the parameter p. Any practical algorithm will 
then fail because of the finite numerical precision of computers. Hence n should be 
restricted to a fairly small value. 

There a number of additional aspects which should be mentioned in this section. 
For example, when n is finite, as it always must be in any practical application, it 
is probable that although the norm has a distinct global minimum there are many 
local minima. In any practical situation the density function is fitted to a finite set of 
points rather than a continuous function. This is another situation where there may 
be many local minima. These local minima are certainly found in practice and cause 
some difficulties. Again, this is a good reason to limit n to a small value. 

Finally, note that a function of the form of (3.3) implies that p(x)  and all its 
derivatives are continuous functions of x. This function cannot therefore be used 
to represent the case of a water column which has a density structure consisting of 
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a sequence of steps, unless the steps have finite derivatives (which they do have in 
reality). 

3.2. The incomplete beta function density 
Included in (3.3) is an interesting special case which will used as an example in later 
sections of this paper. Consider 

f(x) = ( p  + l)p .f ePB'(1 - ePbt)"dt. (3.4) 

Notice that f(x) is a monotonically increasing function of x. Also f(0) = 0, and 
f(m) = 1. This function is an incomplete beta function (Erddyi et al. 1953, p. 87). It 
represents a step, the depth and width of which are functions of p and 0. 

3.3. The buoyancy frequency 
From equations (1.2), (3.1) and (3.3) 

Note that g is negative since positive x is downwards and hence, if y1,2 = -gpra,Ap/po 
then 

(3.6) 
n 

N ~ ( x )  = C y1,2e-rflx + o(AP/P)*. 

~ 2 ( x )  = - (p  + l)pg*e-px(l- e-bx)p + 0 ( ~ p / p ) 2 .  

r = l  

In the case of the beta density (3.4) 

(3.7) 
Po 

And thus if yz = -pgAp/po, and terms O(Ap/p)' are ignored from now on, then 

N*(x) = y 2 ( p  + l)e-bX(l - e-Px)p. (3.8) 

It is straightforward to show that d"' [N*(x)] /dx'" = 0 at x = 0 for all m < p including 
m = 0. So when p is large, N 2  increases slowly at first from 0 at x = 0, and then more 
rapidly to a peak, and then decreases exponentially towards zero at x = 00. When 
p = 1, N 2  increases rapidly at first from 0 at x = 0, and then increases more slowly 
to a peak at x = ln2/P, and then decreases exponentially towards zero at x = co. 

1 

The position of the peak is found from d [N2(x)] /dx = 0 

(3.9) Xpeak = - ln(p + 1). 
P 

The separation of the points at which d2N2(x)/dx2 = 0 gives a definition of the width 
of the peak, and is 

1 ( 3 p + 2 +  

P 3p + 2 - b ( 5 p  + 4 1 2  
Ax = -In (3.10) 

When p = 1 there is only one point at which d2N2(x)/dx2 = 0 (x = ln4/P) and the 
width is then defined as the distance between this point and x = 0. This case is then 
also included in the above formula. 

So for p = 1, Ax = ln4/P = 1.3863/p; for p = 10, Ax = 1.8412/p, and for p = 100, 
AX = 1.9160/p. AS p -+ 00, AX + 1.9248/8. 
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4. The differential equation 

equation (1.1) becomes 
If all terms O(Ap/p0)’ are ignored, and N 2 ( x )  is represented by (3.6), the differential 

Put t = e-BX and then 

This equation has a regular singularity at t = 0 and an irregular singularity at 
t = co. When n = 1 or n = 2 the equation is a confluent hypergeometric equation (the 
case n = 1 is transformed into a special case of n = 2 by the transformation t = u’). 
For n > 2 this is no longer so (Ince 1926, $20.51). For n > 2 therefore, the equation 
does not have known transcendental solutions. However, one may hope that in this 
case it is possible to express the solutions to the equation approximately in terms of 
the solution for n = 2 using a method of comparing solutions. In the next section 
equation (4.2) is solved for the case when n = 1 and this leads to Bessel’s equation. 
In the subsequent section the case n = 2 is shown to lead to Kummer’s equation. In 
both cases the approximate dispersion relation (1.3) is shown to be valid both for the 
lowest mode and also for higher modes. 

5. The case n=1: Bessel’s equation 

it is shown how the eigenvalues relate to the dispersion relation (1.3). 
The Bessel function case has been analysed before (Garrett & Munk 1972). Here, 

When n = 1 equation (4.2) becomes 

Putting t = w2(P2c;/4q:) then gives 

which is Bessel’s equation, independent solutions of which are J p ( w )  and Yy(w). In 
terms of the original parameters the solution is 

where C and D are arbitrary constants. For infinitely deep water one boundary 
condition is y + 0 as x + co and hence 

The other boundary condition is y = 0 at x = 0 and so 

J y  (2)  = 0. (5.5) 
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The eigenvalues are therefore zeros of the ordinary Bessel function, and the argument 
of the Bessel function is proportional to l/cp. A plot of the zeros of J,(x) (Watson 
1944, figure 33) shows that for v 2 0 and x 2 0 there is an almost linear relation 
between the zero, jv,n and v. The smallest zero of J v ( x )  for large v is given by 
jv,l = v + O(v9) (Watson 1944, 518.81). Here, v = 2 k / p ,  and so, for .large v ,  
l / c ,  - k / q l ,  or, since N,,, = q l ,  then l / c ,  - k/N,,,, and in this case a,,, = N,,,, 
see $2.4. 

An approximation for the mth zeros of J v ( x )  is 

- j , , a ( m + I - t ) r i -  V 4v2 - 1 
8 7 c ( m + f - f )  . 

(Watson 1944, $15.53). This approximation is good for moderate v d 1 if m is small. 
Hence 

Comparing this equation with equation (1.3) it is clear that in this case, at least, 
there is qualitative agreement with the computations based on experimental data. 
When k = 0 and m = 1, formula (5.7) gives cpo = 8y11/371p, whereas formula (2.8) 
gives cpo = ql/B,  a difference of approximately 15%. 

6. The case n=2: Kummer’s equation 
This case is of particular interest because if the second term in (3.6) is negative 

and 11; = [: and 11; = -[: so that N2(x )  = [:e-PX - [;e-’Ps then N 2 ( x )  has a smooth 
maximum and provides a rough model for the observed frequency function. 

In this case the equation becomes 

B’ k2  ) t2yI + ty‘ + ( E(c;t  - (;t2) - - = 0. 
1 

Put t = ~ ( & / 2 [ ~ ) ,  p = (:/2cpB[2, and 5 = k / P  in equation (6.1), and then 

There are two possible values of 5 which satisfy (6.2) (+[ and -<). The positive 
exponent is chosen since it gives that branch of the solution which is zero at u = 0. 
Hence put y (u )  = u5e-u/2 Y(u), and then 

U P  + (1  +25 - u ) ! P  - (; + 5 - p ) Y =  0. (6.3) 

This is Kummer’s form of the confluent hypergeometric equation (Slater 1960, 51 .1 .1) .  
In terms of Kummer’s function, that branch which satisfies the boundary condition 
Y(0) = 0 is 

where E is an arbitrary constant. In terms of the original parameters this is 
Y =  E lFl(i + 5 - p ; l +  25;u) ,  (6.4) 
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The second boundary condition requires that at x = 0, y = 0 and therefore the 
eigenvalues are given by 

Let z = 2 i2 /cPP,  also [l > 0 by hypothesis, hence the zero, z, is real. In addition, put 
a = + k /P  - ( : / 2 ~ , / 3 < ~ ,  and b = 1 + 2k/P (hence b > 0). If -1 < a < 0, b > 0 and 
u > 0 there will be one real zero; similarly if -2 < a < -1 there will be two real 
zeros and so on (Slater 1960,§6.1). One zero coincides with the surface and therefore, 
for the mth mode 

or, since z = 2i2/PcP 

1 2ki2 Pi1 
- > - + -(2m - 1). 
cp r: r: 

Notice that, because -m < a < -(m - 1) for m zeros, then, for a given m, a 
is bounded as k --+ co. Now, a = + k / P  - [ f /2c ,P i2 ,  and therefore, as k -, co, 
it/2cpP1;2 k / P ,  i.e. l / c p  - 2 i 2 k / l : .  It is straightforward to show that N,,, = q:/2C2 
and hence l / c p  - k/N,,, for all modes. Compare this with the remarks made in $2.4; 
this is an example where w,,, = N,,,. 

It is possible to estimate the zeros of the Kummer function in a number of ways. 
Because a is bounded as k --+ co for a given mode number m the following result may 
be used here: 

e’/2 r (b) 
1Fl[a;b;u]  = ~ [Ai(s) cos an + Bi(s) sin an + O(p-3 ) ] ,  

(2p)b- 5 

where s = (u/4p - 1)(2p)3 and p = b / 2  - a (Tricomi 1954, p. 123); (Slater 1960, 
equation 4.5.7). Ai, Bi are the usual Airy functions, and at the zero, u = 2 ( 2 / c p b .  
Also, p = [ ;? /2cpPi2 .  This approximation is valid when u and 4p are approximately 
equal and go to cc together so that Ai(s) is ‘large’ in comparison 
approximation then gives 

1 1 Ai(s) + O(p-5) 
p = i: + - + (m - 1 )  + - tan-’ 

2 71 

where m is the mode number. Now, u/4p = i?/i;?, s = p:(C:/it - 1). 

with p-3. This 

(6.10) 

Hence 

Compare with equation (2.11). Note that N,,, = [:/2i2, and so l / c ,  - 2kC2/r?, i.e. - k/N,,, for large k .  
When i l  = 5 2  = [, N 2 ( 0 )  = 0 in the x domain, and then u = 4p and s = 0. 

Furthermore Ai(O)/Bi(O) = l / f i  and so 

1 
- = - + - (2m - 1) + - + O@+)) . 
CP 2k i P (  c 3 

(6.12) 

For k = 0 and m = 1 this formula gives cpo = 3[/4P whereas formula (2.8) gives 
cpo = a [ / 2 p ,  a difference of about 14%. 
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7. The general case 

In the previous two sections two special cases of the N 2 ( t )  function corresponding 
to n = 1 and n = 2 were examined. The eigenfunctions were found to be Bessel 
functions and confluent hypergeometric functions respectively. It was shown that, in 
each case, om,, = N,,, for all modes. This relation is now shown to be true for mode 
1 for the ‘beta density’ of $3.2 and a sufficient condition for more general validity is 
derived for mode 1. In particular, the following result is proved in this section: If 
N 2 ( x )  is O(e-flx) as x -, 00 and has a maximum value N i , ,  then a sufficient condition 
for 

to hold for large k for the lowest mode is that N 2 ( t ) / t  is convex for 0 < t < 1 where 
t = e-flX, and 1/p is an arbitrary length scale. 

7.1. The asymptotic approximation 
In the general case the differential equation (4.2) gives 

t2y” + t y ’  + (~ N 2  ( t )  - $) y = 0. 
P’C? 

(7.2) 

In the analysis which follows it will be more convenient to remove the term in y‘ 
in equation (7.2) by means of the substitution y = t-ic#J to give 

where = k / P .  When a power series such as equation (3.6) is substituted for N 2 ( t )  
with t = e d x  it is clear that the resulting equation is closely related to Whittaker’s 
equation in that it has a regular singularity at t = 0 and an irregular singularity 
at t = 00 (Slater 1960, $1.6). In general, however, the equation has an irregular 
singularity at co of higher rank than Whittaker’s equation and few properties of the 
solutions have been investigated. The confluent hypergeometric case was worked out 
in the previous section, and it is clearly of some interest to find out if equation (7.3) 
can be approximated in some sense by Whittaker’s equation. In this section it is 
proved that this is indeed the case when k + 00. In particular, it was shown in $2 
that as k + co, l / c p  - klo,,, where om,, < N,,,. In &35 and 6 it was demonstrated 
that for two specific cases of N 2 ( t ) ,  a,,, = N,,,. It is now shown that this relation is 
more generally true. 

Consider the ‘turning points’ where the angular frequency of the wave o is equal 
to the local buoyancy frequency N ( t ) .  If N 2 ( t )  has a single maximum there will 
be two turning points. The domain between the two turning points contains the 
oscillating part of the eigenfunction where there are maxima, minima, and zeros. 
The eigenfunction decays exponentially in the x domain on either side of the turning 
points. If k is large, then the exponential decay will be very rapid. Hence, for large 
enough k,  it might be expected that the eigenfunction will be significantly different 
from zero (in some sense) only in the t and x domains between the turning points. 
Consequently, the behaviour of the eigenfunction (and the eigenvalues) for large 
enough k might be largely determined by the N 2 ( t )  function in the neighbourhood of 
the maximum. 

In order to keep the following analysis manageable it will be assumed that N 2 ( t )  
has one maximum. In a sufficiently small neighbourhood of the maximum, N 2 ( t )  
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has a parabolic form. In the previous section it was shown that when N2( t )  is 
a quadratic the eigenfunction is a confluent hypergeometric function, and for this 
case, l/c, - k/N,,,. Notice that the relation l/c, - k/N,,,, if generally true, is 
independent of the exact shape of the N 2 ( t )  function. It is only dependent on the 
maximum value. If N2( t )  is approximated by a parabola it ought not to be necessary 
to approximate it by an 'exact' Taylor series parabolic approximation near the peak. 
Any parabola ought to do, so long as it has the required peak value. 

Now consider the general buoyancy squared frequency function N2(t ) .  Let N 2 ( t )  
be approximated by M 2 ( t ) ,  a function to be determined. In addition to equation (7.3) 
we then have 

(7.4) 

where 0 is the eigenfunction associated with M2( t ) .  The eigenvalues associated with 
N 2 ( t )  and M 2 ( t )  are 1/c4 and l/ce respectively. 
Also 

(410 - = y e  - +elf, (7.5) 
where the prime denotes d/dt. Hence 

Suppose that 4 and B satisfy the boundary conditions 4(0) = B(0) = 4( 1) = e( 1) = 0 
and that 4' and 8' are bounded at t = 0 and t = 1 so that 4 and 0 are eigenfunctions. 
Then 

The integrals in expressions (7.6) and (7.7) converge if 5 > 0 because near t = 0, 
4, - t5 ,  Bi - tC ,  M 2  = O(t)  and N 2  = O(t) .  

Consider the lowest mode. Then $0 3 0 and thus N240 / t2  3 0 and M24B/ t2  3 0. 
Suppose that it is possible to choose M 2 ( t )  to be a quadratic such that M 2 ( t )  d N2(t )  
and M2(0)  = 0. Consequently, c$ 3 cg. Furthermore, let the maximum values of M 2 ( t )  
and N2( t )  be equal so that Mi,, = Ni,,. Since M 2 ( t )  is a quadratic the eigenfunction 
B(t) is a confluent hypergeometric function and it was shown in $6 that for this case 
ca - N",>,,/k. Also, q - u m a x / k  where o,,, < N,,,, but cg 3 ce hence O m a x  = N,,, 
and hence 

(7.8) 

for mode 1, provided that M2( t )  and N2( t )  satisfy the conditions specified above. 
These conditions are now examined in detail. 

Equation (3.6) with t = e-BX gives a polynomial in t for N2( t )  
n 

r=l  

Let N 2 ( t )  have one maximum in 0 d t d 1 at t = to, at which point N2(tO)  = !Via,. 
Suppose that N2( t )  is approximated by M 2 ( t )  where 

M 2 ( t )  = N;,,: (2 - ;) 
to 

(7.10) 
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so that M2(tO)  = Ni,, and M2(0)  = 0. Notice that, as defined in (7.10), M2( t )  will 
be negative when t > 2t0. This is not physically realistic since such a water column 
would be unstable. However, this does not matter since as k + co, the eigenfunction 
is arbitrarily small in the region where t > 2t0 compared with its magnitude where 
t = to. Hence M2( t )  could be defined as zero where t > 2t0 without affecting the 
result. To do so, however, would unnessarily complicate the analysis. 

Now define 
R2(t) = N2(t) - M2(t). (7.1 1) 

Clearly, since M2( to )  = N2(to)  then R2(tO) = 0. Now consider 

(7.12) 

Since R2(tO) = 0, M2( t ) / t  is a linear function which intersects N2( t ) / t  at to, the 
maximum of N2(t ) .  Furthermore, if N 2 ( t ) / t  is a convex function then M2( t ) / t  will be 
a tangent to N 2 ( t ) / t  at to and consequently M2( t ) / t  d N2( t ) / t  (Hardy, Littlewood & 
Polya 1959, theorem 112). Hence it is sufficient that N 2 ( t ) / t  is a convex function for 
the condition M2( t )  < N2(t )  to hold, as required in the proof of (7.8). 

As an example take the ‘beta density’ N2( t )  = y 2 ( p  + l)t(l - t)P described in $3.2. 
The maximum occurs at to = l / (p + 1) at which point Ni,, = y2pP/ (p  + 1)P. It 
is straightforward to show that d2[N2(t)/t]/dt2 2 0, and hence N 2 ( t ) / t  is a convex 
function (Hardy, Littlewood & Pdya 1959, theorem 94). Expression (7.8) thus holds 
for the ‘beta density’ for the lowest mode. 

8. Multiple peaks: a qualitative description 
Experimentally measured buoyancy frequency functions often consist of a basic 

‘hump’ with multiple peaks and troughs superimposed. The methods of the previous 
section can be used to provide a qualitative description of the effect of multiple peaks 
in the N 2 ( x )  function on the dispersion relation for the lowest mode. As an illustration 
consider the beta density, equation (3.8), modified by the addition of oscillations 

Q2(t)  2 y 2 ( p  + l)t(l - t)’[l + h(t)],  (8.1) 

where t = e-Bx, as usual. Also, h(0) = 0, h(1) = 0, and h(t)  2 -1 since Q2(t)  2 0. 
In addition, h(t) has maxima and minima so that it oscillates about 0 in 0 < t < 1. 
Hence Q2(t) is basically the beta density of $3.2 with oscillations superimposed. Let 

(8.2) S”t) = y 2 ( p  + l)t(l - t ) P  

so that Q2(t) = S2( t )  [1+ h(t)], and let q t )  and @(t) be the eigenfunctions correspond- 
ing to Q2(t) and S 2 ( t )  respectively. Furthermore let the corresponding eigenvalues be 
l/co and l/co. Applying equation (7.7) then gives 

It is evident that if h(t) oscillates over 0 d t < 1 and does so rapidly enough then 
the integral Jb’(S2/t2)h@@dt will be small in some sense. In particular, suppose that 
the scale length of each oscillation is much less than the scale length of the main 
hump, i.e. << l /p  and also much less than the scale length of the eigenfunction. 
Then it may be expected that the integral will be small and that ccg = co. Hence the 
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effective buoyancy frequency squared function is a smoothed version of the actual 
function if k is small enough and the dispersion relation will be given by (2.11) with 
w,,, set by the peak of the underlying smooth function (8.2). As k increases the peaks 
of the oscillations will become signficant and the effective amax will increase so that 
the gradient of the term in (2.11) proportional to k will decrease. 

9. Summary and discussion 
In the Introduction it was noted that the dispersion relation for linearly propa- 

gating internal waves, computed numerically from the eigenfunction equation using 
experimental data for the density function, often has a particularly simple form. This 
simple approximate dispersion relation is especially useful for predicting the general 
shape and pattern of internal wave wakes. 

In $2 some general properties of the dispersion relation were examined and it was 
demonstrated that in general 

1 1  = - + __ k + ~ ( k )  - 
cP Cpo w m a x  

where cp is the wave phase speed for a particular mode, cpo is the phase speed at 
k = 0, a,,, is the maximum possible wave angular frequency and coma, < N,,,, where 
N,,, is the maximum buoyancy frequency. Also, ~ ( k )  = 0 at k = 0, is bounded for 
finite k and E(k) = o(k) when k is large. 

In particular, when E(k) can be neglected, the dispersion relation for a mode 1 wave 
is approximately 

CP W n a x  

Interest then centres on finding sufficient conditions for mmax = N,,,, and in 
discovering if E(k) can be neglected. These problems are addressed by analysing 
the eigenvalue problem for a class of buoyancy frequency squared functions N 2 ( x )  
which is taken to be a class of real-valued functions of a real variable x where 
0 < x < 00 such that N 2 ( x )  = O(e-0’) as x -, co and 1/p is an arbitrary length 
scale. Only the infinite-depth problem with a rigid surface is considered. It was 
demonstrated that N2(x )  can be represented by a power series expansion in ed’. 
The eigenfunction equation was constructed for such a function and two cases of 
the equation which have solutions in terms of known functions (Bessel functions 
and confluent hypergeometric functions) were worked out. More generally, it was 
demonstrated that when k -, co it is possible to approximate the equation uniformly 
in such a way that it can be compared with the confluent hypergeometric equation. 
The eigenfunctions of the equation can then be taken to be Whittaker functions as 
an approximation and the eigenvalues are, approximately, zeros of the Whittaker 
functions. The main result which follows from this approach is the following: 
If N’(x) is O(e-0’) as x -+ and has a maximum value N i , ,  then a sufficient 
condition for 

k -- 1 

c p  N m a x  

- 

to hold for large k for the lowest mode is that N*(t ) / t  is convex for 0 d t < 1 where 
t = ed’, and 1/p is an arbitrary length scale. 

Finally it was demonstrated that fine-scale peaks and troughs in the N2(x )  func- 
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tion are effectively smoothed by a mode 1 eigenfunction provided that the angular 
frequency of the wave is not too great. 

The author thanks Gary Watson of the Mathematics Department, Bristol Univer- 
sity, for much help in the preparation of this paper. Also thanked is Anton Edwards 
of the Dunstaffnage Marine Laboratory, Oban, Scotland for taking the measurements 
of the water column in Loch Linnhe on which figure 3 and subsequent figures are 
based. The photograph in figure 1 was taken by John Branson of DRA Farnborough. 
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